数字电源技术在LED照明方面的应用

by 北山域名主机 . 0 Comments

引言

led照明以其发光效率高,使用寿命长,亮度控制简单和环保的优势,敏捷受到广大用户的欢送。作为新型的节能光源,LED灯具会逐步地代替传统的白炽灯泡。LED照明的一直普及对调光和控制技术提出了越来越高的要求。当前用户主要关怀的是,LED灯具必需要使用安全、重量轻、寿命长、不影响用户健康,并可适用于现有的调光装备以及可以蒙受的价钱。

数字电源技术冲破传统方案的局限性,可以对用户的要求进行整合和优化,为LED 驱动和调光控制提供一个完整的解决方案。本文针对LED灯的详细设计问题来探讨数字技术的优势和解决问题的办法。

1  LED驱动技术

高效率无光耦转换 LED的驱动电路把能量从交流电网转换为自身发光所需的直流情势。能量在转换的过程中会有损耗。转换效率越高,损耗越小,对驱动部门散热的要求也越低。绝大多数LED灯采用灌胶和铝散热器来解决散热问题。对用户而言,高效率的驱动方案可以降低驱动电路的散热成本,减轻LED灯的分量。降低电路温升还有利于提高LED灯的使用寿命。传统的隔离驱动方案利用光耦传递二次侧的电流信号给一次侧控制器来维持稳定的输出电流。二次侧检测电路增添了驱动电路的庞杂性、成本和损耗。光耦的使用还降低了牢靠性。因此,主流的LED灯生产厂家都开始采取无光耦的原边反馈技术。当前,数字原边反馈技术已经成熟并且得到了普遍运用。数字控制可以实现无光耦反馈的输出电流的精确控制。利用变压器反馈波形,数字技术还可以实现波谷开通来进步转换效率。

1.1  无光耦精确电流控制

图1(a)显示一个原边反馈的反激变换器。一次侧和二次侧的电流波形显示在图1(b)中。均匀输出电流Iout=1/2XXXX,这里Isp是变压器副边绕组的峰值输出电流;Trst是变压器磁恢复时光调制器;Tprd是开关周期。在幻想情形下,原边峰值电流Ipp=XXXX,其中Np和Ns是原边和副边绕组匝数。因此,输出电流Iout=XXXXXX。当初假设Iset是设计输出电流,数字控制器可以通过控制原边峰值电流Ipp=XXXXX来取得所需的输出电流。

1.2  波谷开明控制

波谷开通的主要目标是失掉高效率。图2是MOSFET 关断以后耦合到变压器辅助绕组上的电压波形。如图2 所示,变压器在T1时间点完成磁恢复。而后磁化电感和MOSFET漏级杂散电容开始谐振。如果MOSFET 的开通正利益在漏源电压谐振的谷底T3,就可以达到最低开关损耗。同时电磁烦扰的减小有利于提高输入滤波器的效率SDRAM。利用数字技术对帮助绕组上的电压波形作剖析,可以非常简单的实现波谷开通的功效。

1.3 低电流纹波设计

LED照明不仅需要精确和稳定的电流,还要求电流的纹波无比低。迷信家研讨表明,低于165Hz的闪烁,不论来自可见光仍是不可见光,都有可能引起偏头痛或者视觉不适。低于70Hz的闪烁甚至会对少部分人引发癫痫。因此, 美国电气和电子工程师协会(IEEE)正在制订相干尺度来领导对人体健康无迫害的LED 照明驱动的设计。

一个输入呈阻性的电源系统内部必定要存在储能元件,当输入电压低的时候可以提供能量给负载。如果能量进行单次转换又要求输入呈阻性,其需要异常大的输出电容来降低负载的电流纹波。如果能量进行二次转换可以解决这个问题。通常的二次转换形式是联合Boost 输入级和反激式输出级。输入级主要控制驱动电源的输入阻抗。反激式电源提供低纹波输出电流。二次转换控制的复杂性很高。特别是当接入调关器的时候还需要和谐输入级和输出级的能量均衡。图3是常用的二次转换系统结构。传统的二次转换控制方案需要同时得到输入电压Vin、Boost 电流IL、中间电容上的电压Vbulk、反激式原边电流Ip以及电压的反馈Vout,控制成本很高,因此很难得到广泛应用。数字控制技术提供了简略的一次侧反馈方式,还可以预测旁边电容电压,因此只要要检测输入电压Vin 并解析变压器反馈信号就能实现完整的二次转换控制。大大简化了系统的控制成本DDR2 SDRAM

全面的驱动掩护 在LED 灯具的设计,生产跟使用的进程中,驱动电源有可能面对LED 负载的短路、开路,驱动电源板的短路、虚焊,接插件的错接、反接等等问题。全面的驱动维护能够简化LED 灯具的设计和出产,延伸使用寿命,下降生产本钱。对体系状况进行实时监测并做出准确断定是数字掌握的一个优点。数字控制可以疾速地实现

* LED 负载的开路保护

* LED 负载的短路保护

* LED 负载的过热保护

* LED 灯的限功率节制

* 控制器的各管脚的开路和短路保护

2  调光技术

2.1 动态的调光器阻抗配合

传统的调光器重要用于驱动纯电阻负载,包含前沿切相调光器,后沿切相调光器和智能调光器等等。因为负载是白炽灯,传统的调光器功率都在200W- 600W。LED 驱动电源的特征正好相反–小功率,容性负载。为了可能兼容这些调光器,LED驱动电源必需供给阻性或者是类阻性的负载才干使调光器稳定工作。利用功率电阻直接提供阻性负载是一种传统的解决方案。这种方法的调光效果好,但是其主要问题是效力低。这与LED灯高效率的上风南辕北辙。另外一种常见的计划是应用功率因数整流技巧,使输入电流追随输入电压变化,因此提供类阻性负载。这种方案往往实用于高功率LED驱动利用上。对于遍及的小功率家用和商用LED驱动,其问题是输入阻抗往往过高,特殊是调光器和驱动局部EMI 克制元件的彼此作用往往使得其无法保障有足够大的输入电流去保持可控硅的稳定工作。如果调光信号处置不好就会造成LED 闪烁。

数字控制技术可以灵巧地结合功率因数整流技术和动态阻抗匹配方法。当控制器检测到调光器存在的情况下,根据调光器输出的相位角,控制器提供匹配的阻抗来维持可控硅的导通。在控制相位角判断完成以后,控制器可以利用高阻抗来关断可控硅,同时通过功率因数整流技术来维持输入的波形。图4 所示后切和前切调光器波形。OUTPUT(TR)是Boost 驱动控制。例如当检测到后切波形时,Boost 驱动完全打开,倏地地泄放输入端电荷;相反,当前切调关器可控硅关断后,Boost 驱动则迟缓地泄放输入端电荷。在这两种情况下,输入的相位都可以得到完整地恢复。目前市场上许多控制器都要求可控硅导通一个完整的交流周期,对提高调光的效率非常不利。利用数字技术可以大大降低调光的损耗,合乎绿色照明的主旨。

2.2 完善的用户调光体验

用户已经习惯于白炽灯的调光,因此往往等待LED的调光性能濒临甚至超过以往的休会。因而调光性能对宽大用户接受LED灯十分主要。调光机能的好坏完整取决于驱动电源的把持。目前市场上的一些可调光的LED灯在良多方面无奈满意用户的须要。比方说,假如多个LED灯衔接在统一个调关器上,各个灯的亮度会有显明的差异,这是调光的一致性。还有,用户调光时,盼望立刻看到调光的后果,然而又不愿望看到忽然的亮度跳跃甚至燃烧,这是调光的动态响应。一些LED 灯的光照度跟着输入电压而变更,在一些电网电压稳定比拟大的地域就会影响用户的应用。更重要的是,如果LED灯不能稳固照明而是不停的闪耀,用户是无法接收的。

很多LED灯利用平均输入电压或者近似均方根输入电压来控制输出电流。如果每个LED灯对输入电压的检测和判断有差别,就会造成输出光照的不一致。如果输入电压降低,检测的平均电压会降低,LED灯输出光照就会减小。而利用数字技术则可以实现对输入信号相位的的检测。由于相位是一个时间量,输入电压的变化对相位的影响有限。因此,如果结合输入电压和相位的检测,可以实现稳定并且一致的输出光照。数字算法还可以检测用户调光的速度来预测可能的调光的地位,使得输出电流快速的跟随用户的指令来变化。这样平衡了调光的动态响应和正确性,防止了调光过慢或者光照的过调。使得用户调光的体验靠近传统的白炽灯。

2.3 调光保险性

当用户购置LED灯当前,生产厂商无法完全懂得其使用环境。交流输入的频率可以是50Hz或者60Hz;调关器可以是支持的或者是不支持的;电网电压会发生波动,也会产生畸变;等等。诸多因素会影响LED灯的亮度变化甚至安全性。驱动电路的设计必须斟酌这些可能发生的环境变化,具备相应的对策。当前的数字控制技术实现了

* 自动调光模式识别。控制器可以自动识别前切相式调光器和后切相式调关器,甚至在运行过程中容许前后切调光器的转换。

* 自动检测不支持的调光器FRAM。如果某一种调光器是所生产的LED 灯不能支持的,数字技术可以根据其输出波形,迫使LED 灯进入保护模式,保障了用户的使用平安。

* 主动避免屡次快捷启动。因为LED 灯请求启动快,当LED 灯产生故障,或者输入电压畸变重大时,驱动电源有可能重复地重启动,造成驱动电路的过热。数字控制可以很便利的判断路障的存在,预防频繁的反复启动。

3  典范的数字LED控制系统

数字控制LED系统构造

图5是iWatt的iW3610系列数字调光控制系统结构示用意。iW3610控制器采用8个管脚的封装,实现了如下功能:

* 调光器阻抗匹配

* 输入功率因数控制

* Boost电压的猜测和控制

* 反激式变换器的一次侧恒流控制

* 调光器的类型检测和调光控制

* 完全的输入,输出和内部保护

4  调光器辨认和控制流程

图6是iWatt的iW3610系列数字控制器的内部结构图。VIN 采样调光器的输出电压波形。调光器信号通过模仿到数字转换进入调光控制和相位检测数字模块。根据前切或者后切相位的百分比,恒流控制模块盘算出所需的输出电流控制量。控制量通过数字到模拟转换提供应原边电流控制比较器(Ipeak)。Isense检测原边电流信号,通过图1所示的恒流控制原理,得到稳定的 LED输出电流。Vsense提供变压器反激的电压信号。通过对反激信号的解析,控制器可以获得输出电压,电流以及波谷的时间点来实现各种保护功能。

图7给出了调光器的启动检测。调光器翻开后,驱动电路开始充电。当VCC供电电压到达启动电平,控制器开端工作。Boost控制信号OUTPUT(TR)导通3-4个交换半周期,提供调光器一个低阻抗的回路来实现初始化。在这期间,控制器依据调光器输出的特点波形,断定输入的电压范畴、频率,和调光器的类型、相位角。如果判定是所支撑的调光器,就启动驱动电路,输出所对应的LED电流。

iW3610系列产品应用方案 图8(a)给出了iW3610系列控制器的一个详细应用方案。图8(b)和(c)分辨显示了后切调光器和前切调光器的实测波形。

5  结语

数字控制技术在LED照明范畴存在控制机动,调光性能好和保护全面的优势。针对越来越多的控制和保护要求,iWatt的iW3610系列数字控制器正逐渐成为LED通用照明的主流驱动控制器。iW3610系列数字控制器合适灯具内置化驱动的要求晶体振荡器,采用数目未几的元件实现了高性能调光、较高功率因数、隔离驱动以及无光耦的精确恒流输出设计,优化了整体LED灯的散热性能。

发表评论

电子邮件地址不会被公开。 必填项已用*标注